

Welcome to MLV’s documentation!

Contents:

	Multi Locus View
	Summary

	Creating a Project

	Adding Graphs/Charts

	The Genome Browser

	The Table/Images

	Tagging Locations

	Adding Images

	Running Analysis Jobs

	Creating Subsets

	Exporting Data

	Project History

	Permissions

	Submitting an Issue

	Frequently Asked Questions

	Combat MLV
	Summary

	Features

	Getting Started

	Left Hand (Summary) Panel

	Right Hand (Feature) Panel

	Developer Documentation
	Installing the Application

	Config Settings

	Executing Scripts

	Modules

	Projects

	Jobs

Indices and tables

	Index

	Module Index

	Search Page

Multi Locus View

Summary

Multi Locus View (MLV) enables the user to visually inspect the underlying data from NGS experiments e.g. RNA-seq, ChIP-seq.
Initially, the user uploads a list of genomic locations and associated data (Uploading a File), which can then intuitively filtered, sorted and viewed to drill down to regions of interest.

[image: alternate text]
The view is divided into three sections. The top left shows charts (1), the bottom left a simple genome browser (2) and the right section shows a table containing all the genomic locations (3). Initially no charts are present and the browser only shows a track of the uploaded genomic regions (and possibly a RefGene track if a genome was selected). In order to make it easier to view and filter your data you can add charts (Adding Graphs/Charts) and browser tracks (Adding Tracks) . In addition analysis jobs such as finding intersections, claculating signal at each location from a bigWig track and dimension reduction can be carried out (Running Analysis Jobs).
Locations can be annotated (Tagging Locations) by the user and downloaded or exported to the data visualisation tool Zegami [http://www.zegami.com]

Creating a Project

[image: alternate text]
To create a project click on ‘My Projects’ (1) on the top navigation bar and then the Multi Locus View panel (2). This will take you to a page where you have to fill in the name and description of the project (3). You also have to select the gemome required. If the genome you want is not available select ‘other’. In this case gene information and other annotations will not be available. When you press ‘Create’ you wll be taken to a page where you can upload your file (see below)

Uploading Data

Input File Required

The file format is quite flexible and can be either tab(.tsv) or comma(.csv) delmited and can also be gzipped (.gz).
The only requirement is that the first three columns (in order) specify the genomic location i.e. chromosome, start and finish.
Normal bed files fulfill these criteria as well as excel data that has been saved as a .csv or .tsv file.

Other file types apart from bed-like files are not supported in the initial upload but
can be added later to the browser (see Adding Tracks). In addition, in subsequent analysis bigWig files can be uploaded in
order to calculate peak stats at each genomic location (see Calculate Peak Stats)

Chromosome names can either be the UCSC e.g. chr1, chr2, chrX etc or Ensembl style 1,2,X. However, if subsequent tracks are added
to the browser or biWig files are used to calculate peak stats, they have to be of the same format as the initial upload.
This is not the case for calculating intersections, where you can mix and match between projects/annotation sets with Ensembl and UCSC style chromosome names.

Uploading a File

[image: alternate text]
Press Choose in the displayed dialog and select your file containing genomic locations.
The file will be parsed and the column (feild) types will be ascertained and displayed.
Ensure the correct datatype has been deduced and change if necessary using the dropdowns (2).
The header names are taken from the file (1), but you can change these and you can also delete any columns that you do not want (3).
If no headers were detected in the file, enter the name of the column - the value of the first row is given to help you (1).
If the file contains a header, but it was not detected, check the Has Headers box (4) at the the bottom of the dialog.

Once you are satisfied, press the upload button. There will be a delay as the data is uploaded and processed and if there are no problems
you will be presented with an initial view

Saving A Project

When tracks, graphs or columns are added and you have edit permissions (see Permissions), they are permanantly added to the project.
Also, when an analysis job has completed, any graphs,tracks or columns produced will be permanant. However, when you alter a graph or
tracks’s settings or reize/move them, these are not saved. Similary any changes you make to the table (column resizing/ordering, sorting etc.)
will not automatically be saved. In order to save these changes you need to save the layout > Save Layout.

If you wish to make changes to public project then you will have to clone the project > Save As.
The project will be copied into your name and you can them make any changes you wish.

Adding Graphs/Charts

Charts help you get a picture of the data as a whole and also help you filter the data.
By selecting regions (dragging with th mouse) on scatter plots and histograms or clicking on sections in pie charts, row charts and box plots, the data can be intutitively filtered.
With each filtering step, all charts will update (as well as the table and browser) to reflect the filtered data.
Filters on individual charts can be removed by clicking the reset button which appears on the chart’s title bar when a filter is applied or filters on all charts can be removed with the ‘Reset All’ button.

Charts can be moved by dragging on the title bar, and resized by dragging on the resize icon, which appears in the bottom right hand corner of chart when you hover over a chart.

Initially the only chart visible will be a row chart showing Tags (see Tagging Locations) so you need to add other charts to get a better insight into your data (see below)

Adding a Chart

Clicking on the ‘Add Chart’ button will show a dialog where you have to select the type of chart, the fields to use in the chart and its name. Once created you can change the chart’s settings (icon), which differ according to the chart’s type and with some charts color it (icon). Charts can moved by dragging them via the title bar and resized by the resize icon which appears in bottom left hand corner when the mouse is over the chart. The chart can be removed by clicking the trash icon, which appears when you hover over the graph’s title. Once charts have been added and the appropriate settings/colors added, they can be saved using the icon above the table. The following chart types are available

Scatter Plot

[image: alternate text]
A standard scatter plot requiring numerical fields for the x and y axis. Once created, the points can be coloured (on the title bar). Also by opening up the settings dialog (icon) you can alter the point size (3). By default the graph will show all the points, but you can zoom in and out using the mouse wheel and pan by pressing shift and dragging with the mouse. However if you want the default view to be a particular region, you can set this using the inputs in the Main Region section (4)and pressing show. The x and/or y axis can also be set to a log scale (5). After zooming and panning, the Centre Plot button (6) will restore the plot to show all the points or the region specified in (4). Normal mouse dragging (without shift) will cause pruduce a brush that filters the data, once created the brus can be dragged to different regions of the plot.

Histogram

[image: alternate text]
Shows the distribution of a numerical field in the data. The x range is automatically set to include the largest and smallest values. However, this will often lead to the chart looking skewed due to low numbers of extreme outliers. Therefore, you can use the cog icon (1) to open up the settings dialog, where an upper and/or lower limit can be set (3). Values higher or lower than these limits will be lumped together in the outermost bin (4). The y axis can also be capped (5) in order to get a better handle on bins conatining fewer counts. The number of bins can be adjusted using the appropriate spinner(6). Each bar can be coloured by categorical data use the icon (2).

Pie Chart

Shows categorical data. By default the maximium number of categories shown are the 8 largest ones, any reamining categories are lumped into ‘Others’. This can be changed by opening up the settings dialog (). Clicking on a segment (category) will select that category and clicking on further segements will add these to the filter. To filter again with a single category, use the reset button.

Row Chart

A chart showing categories on the y axis and usually the number of records belonging to this category on the y axis. You can also choose a numerical field for the x axis, in which case the values of this field will be summed for each category. However a boxplot is usually more informative for this kind of information as the average and quartile ranges of the values are shown instead of the sum. As with the pie chart, the maximium number of categories shown are the 8 the largest ones, but this can be changed by opening up the settings dialog ()

BoxPlot

A chart showing categeories and average/quartile ranges of the values of another field for that category. Box plots work best for fields that contain only a small number of categories. They are scaled to include all the datapoints, so if there are extreme outliers, the boxes will appear squashed.

Bar Chart

A Bar Chart showing the column average of any number of supplied fields. Because fields may differ in scale,to ensure differing values can fit on the same scale, the average is scaled between the median +/- 1.5*IQR (the same as the whiskers on a boxplot).
The graph changes to only include those datapints in the current filter. No Selection is possible with this chart, as it would make no sense to filter on a column

The Genome Browser

[image: alternate text]
The browser shows the genomic location of the currently selected table row (or image). The distance either side of the region to also show can be controlld using the margin spinner (1) above the browser

Adding Tracks

Initially only two tracks will be displayed, the genomic locations you uploaded and if you didn’t select ‘other’ for the genome, a track is displaying the genes. Other tracks can be added with the ‘Add Tracks’ button (2), which shows a dialog where you need to enter the url of a publically accessible track. The hosting server of the track should allow Cross Origin Resource Sharing (CORS). The type of track will try and be ascertained based on the url, although you can manually overide this by clicking on one of the radio buttons

Tracks that can be added are:-

	bed(tabix) - A bed file that has been gzipped and indexed with tabix

	BigBed

	BigWig

	Bam - A bam index is also required

	UCSC session - either cut and paste the url from the UCSC browser or use a session url. The latter will be more stable as the former uses a temporary id, which is only valid for a short period.

Altering Track Appearance

Clicking on the track label in the legend (3) will open a dialog for that track. The contents of the dialog will vary
according to the type of track. The track height can be altered from this dialog

Zooming/Panning

There are five ways you can navigate using the browser:-

	You can zoom in and out using the mouse wheel and scroll left and right by deagging the mouse

	Use shift and drag to highlight and zoom into a region on the browser

	Use the magnifying glass icons (4), the zoom amount can be controlled by the adjacent spinner (5)

	Type the location co-ordinates (chr:<start>-<stop>) in the location text box (6)

	Click on a row or image in the right hand table to go to that feature. The margin spinner (1) shows how many bp either side of the feature will be displayed.

Feature track

This shows the uploaded regions(features) displayed in the right hand table. Clicking on the settings icon (7) will bring up a dialog where the following can be adjsuted:-

	Set the field you wish to a label the features with

	Set the field to color the feature by

	Set the field with which to position the feature on the y axis. By default the feature layout depends on the layout (Collapsed, expanded or squished)
but can be a numeric field

	Choose the margins (distance either side of the feature) that will be displayed when you click on an image or a row in thr table

Saving the Browser Layout

Use the disk icon above the the table to save all settings including the current layout of the browser (tracks and track settings)

Capturing An Image

Use the icon (9) to download an image of the current browser view. The image format (png, pdf or svg) can altered using the adjacent dropdown (10)

The Table/Images

The default table behaves as a typical spread sheet, you can alter the column width by dragging the header’s left and right borders and move columns by dragging the column’s header. Clicking on the header will sort by that column. Clicking on that row will select it and update the browser.

Table Mode

[image: alternate text]
If your project contains images (see Adding Images) then then you change how the table is displayed using the table icon (). Three choices are table (1), images (2) and table with thumbnials (3).In image mode, the genomic location can be selected by clicking on the image and using the arrow keys to select the next/previous image. In this mode, the data can be sorted and filtered using the icons () in the menu above the table.
Also in image mode you can alter image size using the slider in the table menu and also color the border around the image by a field (). This opens up a dialog where you can choose the field and the color scale to use

Filtering Data

It is often more intuitive to filter using graphs (see Adding Graphs/Charts), however data can be filtered by clicking on filter icon in each column header. To filter on multiple columns or when the table is only showing images,press the filter icon on the top table menu. This will bring up a dialog showing filtering options for all fields in the data. Whenever any filters are added or changed, any charts will update accordingly,but the filters are not added to the charts or existing filters on the charts updated as they are completely independant.

Sorting Data

The data can be sorted on columns by clicking the column header (shift click to sort on multiple columns). The data can be also be filtered by clcking the sort icon in the table menu. In the sort dialog,the columns to be sorted on are added usng the plus icon and then either Ascending (ASC) or descending (DESC) can be chosen . The sort order can be changed by dragging the labels or columns removed from the sort by clicking on the trash icon

Tagging Locations

[image: alternate text]
Sometimes it may be useful to catgeorise or tag the genomic location based on a trend theat that you have discovered. This can be done by opening up the tagging dialog with tag icon (1) in the menu above the table. Initially only the none category is present. To add other ones type a name in the text box (2) and press the add button (3) . The category will then be added to the list at the top of the dialog. By selecting the radio button next to it, then clicking on an image or a cell in the tagging column in the table will tag that genomic location. Multiple locations can be tagged by clicking and image/cell and the shift clicking another one and all the images/rows in between will be tagged. The ‘Tag All’ will tag all the currently filtered locations with the currently selected catogry. Another way to tag is to use the arrow keys to go to the next previous image/row and then press the shortcut key shown in brackets next to the category to tag the currently selected items with that category. The category color can be changed by clicking on the appropriate color chooser (7). The category can be removed (which will remove all tags of this category from the data using the trash icon next to the category (8)

N.B. To permanantly save the tags press the Save button (5) which will commit the changes to the database.

Adding Images

[image: alternate text]
Images for every genomic location can be added to the project and then displayed in the table. The icon (1) opens up a dialog where you can choose to either have images created based on the internal browser (2) or by the UCSC browser (3). with the USCS option, you can have more detailed images, but is image generation is much slower and you are limited in the number of images you can create. One option is to create a smaller subset (see Creating Subsets and then produce images from this.

MLV Images

Clicking on the Preview button (4) will show a preview of the image for the currently selected row (5). The image is based on the tracks and settings in the browser (6) see The Genome Browser on how to add tracks and alter their appearance. You can adjust the image width and the width of margins shown either side of the genomic location by using the apprpriate spinners (7 and 8). Once you are happy with image you can press submit button (9) and images for all genomic locations will be created. This will take a few minutes (approx 800 images/min).

UCSC Images

Clicking on the UCSC radio (3) will enable the the URL input (9) where you can paste a UCSC browser URL or session. Pressing preview will check the url is valid and produce an image based ob the margin width (7), image width(8) and selected gemomic location (5). If a preview was sucessfuly produced then you can press the submit button (9) to generate images for all genomic locations. This will take quite a while.

An email will be sent when all images have been generated. You can then view the table in image or thumbnail mode (see Table Mode) and upload the project to Zegami

Running Analysis Jobs

Analysis jobs are run in the background on the server and the results, in the form of tracks, graphs and extra columns in the table are added to the project once the job is complete.
The following types of analysis are possible:-

	 Annotation Intersection - calculates whether each location overlaps a set of annotations or locations from another project.

	 Find TSS Distances - calculates whether each location overlaps a Transcription Start Site (TSS) and if not, the distance to nearest site, either upstream (+) or downstream (-).

	 Calculate Peak Stats - calculates the area and max height of the signal from a bigWig file at at each location in the project.

	 Cluster on Columns - carries out dimension reduction (UMAP,tSNE) on any number of given columns in the project.

Jobs are run in the background and can be viewed on thr ‘My Jobs’ page (link in the top navigation bar) or in the history dialog (), which will automatically open when you send a job.
You do not need to stay on the page whilst jobs are running, although if you do when the job is finished, you will be notified and the appropriate results loaded in.

Annotation Intersection

Intersections can be carried out between an Annotation Set, which us basically just a list of genomic locations, or another project.
In the simplest case, a single column will be added, with TRUE/FALSE values, depending on whether a region in your project overlaps with a region in the query set.

Annotation Sets

Annotation sets are just lists of genome locations and can be created by clicking on ‘Annotations’ in the upper panel of my projects page, which will open up the following page:-

[image: alternate text]
Fill in the name, description and genome in the right hand panel (1), then press next (2). A dialog will open (3), which allows you to upload a bed like file (see Uploading a File).
In the left hand panel (4) is a list of all the annotation sets that you own. You can make these public (5), share (6) or delete them (7).

Another way to create an annotation set is within a project, > create annotation set.
N.B. The set will be created from the currently selected (filtered locations), shown the top right hand corner.
Again, the dialog allows you to fill in the name and description of the set and you can also check any columns that you want included in the set.

Intersections

 > ‘Annotation Intersection’ will being up a table with all the Annotation Sets and projects that you are able to inteserct with.
You can select single or multiple (ctrl or shift) sets/projects. If you select a single project/set then a dialog will ask you whether you
want just a TRUE/FALSE column or whether you want extra columns, with information from the intersecting set.

Once an annotation set has run, columns will be added to the table, either a single TRUE/FALSE column for each intersecting set or the data columns you selected in the previous step.
In addition, pie charts showing this TRUE/FALSE distribution will be added, along with a track for each intesecting set.

Find TSS Distances

 will bring up a simple dialog, with the only choice being whether you want to include Gene Ontolgy annotations.
These are taken from the go-basic.obo file (http://geneontology.org/) and collpsed, such there is only one term (the most frequent) at each hierarchical level.
If you include GO annotations, you can choose upto which hierarchical level you want.

Once the job has run four columns will be added to the table

	TSS distance - the distance to the nearset TSS, + being upstream and - downstream

	Gene ID - the Genbank gene id of the nearest gene

	Gene Name - the common name of the nearest gene

	Ovelaps TSS - either TRUE or FALSE depending on whether the region overlaps the TSS

Cluster on Columns

In order to get a better handle on the data it may be useful to collapse some of the fields into two (or more) dimensions, such that they can
be visually clustered in a 2D scatter plot.
To do this click on the cluster icon () above the table, which brings up the dialog below.

[image: alternate text]
Type a name in the text box (1) and select the dimension reduction methods required (2).
The number of dimensions can also be increased (default 2) using the dropdown (3).
All numerical fields in the analysis are displayed (4), check all the ones to be used in the analysis and then press submit (5).

The outputs are columns for each dimension for each method named ‘<method><number>_<anlysis_name>’ e.g tSNE1_anal1, tSNE2_anal1 etc.
For each method, a scatterplot of the first two dimensions will be also be added. You can change these scatter plot e.g color by a specific field (see Scatter Plot) or use the dimensions to add another graph (see Adding a Chart)

Calculate Peak Stats

If you have bigWig files and you want to find out the peak area/height in each of the genomic locations in your project,
use the icon which brings up the dialog below.

[image: alternate text]
Paste the url (or a list of urls) corresposnding to bigwig files you want to analayse in the text box (1) and press Add (2).
If the bigWig files can be located and they are the correct format, they will be added to the “bigWig Tracks to Process” section (3)in the dialog.
The name is taken from the file name, but this can be changed. When you have specified all the bigWig files required, press submit
The area, max height, width and density (area/width) in each location will be calulated. You do not have to stay on the page whilst the stats are being calculated.

When complete, columns will be added to the table with the relevent information and each bigWig track will be added to the Browser.
The bigWig tracks are added with default settings, so you may need to change them to suit your needs (see Altering Track Appearance_).
Note it just calculates the amount of signal in each region and reports the width of the region, it does not try and call peaks and work out the the width of the peak.

Creating Subsets

Clicking on brings up a dialog, which allows you to create a subset of the currently selected locations

[image: alternate text]
You can choose to create the subset either from the currently filtered locations (1) or from a random subset (2) with a specified number (3).
After filling in a name and description (4) and (5), press ‘Create’ and the subset will be created.
Once this has happened, you will get a link to the subset. You can create a susbset of any project you have viewing rights too, including public projects, and you will
be the owner of the subset. All graphs/tracks/columns are copied, although the graphs may look different as there will be fewer locations in the new project.

Exporting Data

Click on the download icon to download the currently filtered locatons. The data is just downloaded as a text file,
although you get a choice to download in either tsv or csv format.
Only the currently displayed columns will be downloaded, so expand any column groups by clicking the plus icon if you want these in your file.
If you have images in your project, you can export the data to Zegami [http://www.zegami.com]. Click on the Zegami icon and a dialog will appear,
wher you have to fill in your zegami username, project id and password. Once the project is created, you will emailed a link to the project

Project History

Every action such as adding a graph/track/column is recorded and be viewed by opening the history dialog ()

[image: alternate text]
Clicking on the eye icon (1) will toggle information about the action. The second icon (2) shows the status of the action, a tick means it is complete, a spinning circle shows that it is still processing an an exclamation mark showd there was an error whilts trying to perform the action. If you have edit permissions you are able to undo the action (N.B. there is no redo action). This will remove the action from the dialog and remove any tracks,columns or graphs that the action generated. If columns are removed, than any graphs which use these columns will also be removed, even if they were not added by the action.

Permissions

There are two types of permission for a project, view and edit.

If you have a view permission for a project (anyone has view permission for a public project), you can open the project and add tracks and charts, as well as edit existing charts and tracks. However, you cannot save any updates or run any jobs such as finding TSS’s or creating images.
If you want to do this, you will have to copy the project (you need to be logged in) - click the disk icon () and then select ‘save as’.
This will clone the project in your name and then you can make any changes you wish.

If you have editing rights to a project you can make any changes you want , run any jobs and save the layout . You automatically have editing rights to a project you own it or if you are an adminisrator. You can also be assigened editing rights to a project (see below)

The icon on the menu allows you to share the project with another user and assign them view or editing rights

Sharing a Project

Click on share icon () above the table and select ‘share project’

[image: alternate text]
Start typing the name of user you want to share the project with in the text box (1) and then select the name from the drop down.
When you press ‘Add’ (2), the project will be shared and the name of the user will be added to the dialog (3). You can change the editing rights of the user to view or edit using the dropdown (4) or stop sharing by pressing the trash icon (5)

Making a Project Public

Click on share icon () above the table and select ‘share project’, you will be prompted to see whether you really want the
project to become public. If you click OK then then anyone (including non users) will be able to view the project. You can share the project by sharing the link in the browser’s address bar.

Submitting an Issue

An Issue or question, can be asked within MLV (if you are logged in) using the help link in the top navigation bar > ‘Send Question’.
You can also submit an issue to he GitHub page [https://github.com/Hughes-Genome-Group/mlv/issues]

Frequently Asked Questions

Can MLV be viewed on a mobile/small screen device?

No. The whole idea is to see how each component ie. the graphs,tracks and images change as you filter the data, which would not be possible,
if only one component was displayed at once.
All panels and individual tracks/graphs/table columns/images can be resized, to get the exact layout that the user requires, rather than relying on adapative screen size techniques which limit viewing to a single compnent/panel on small screen sizes

Can I upload a bigWig file?

Not initially. The only files that can be initially uplaoded are bed or bed like files with genomic locations.
However, bigWig files can be added to the browser and uplaoded for processing later (see Calculate Peak Stats).
Another application, Lanceotron [https://lanceotron.molbiol.ox.ac.uk/] does take bigWig files and identifies peaks based on machine learning.

Combat MLV

Summary

Combat MLV is built on top of MLV [https://mlv.molbiol.ox.ac.uk] but instead of simultaneously viewing multiple genome locations, it allows the visualization of multiple experimental observations from the same samples as produced by the COMBAT project. The vast quantity and disparate types of data that has been generated by the COMBAT project creates many challenges to visualizing the data as a whole. For example, some experiments us|ed bulk tissue, whereas others used single cell techniques. In addition, gene expression, protein abundance. percentage cell types are quite different types of measurements, having different properties such as scales and thus are difficult to compare. There is also a lot of missing data with a relatively small number of samples having measurements from all modalities. To address these issues the following was implemented in COMBAT-MLV:-

	Data from single cell experiments (modalities) is collapsed to sample/tissue (pseudobulk) to allow comparison with bulk experiments

	Data has been binned into percentile bins so each feature will have a relative value from 1 to 10, which allows easy comparison between modalities. However raw data is also available if required

	Gene/proteins have been matched between modalities so bulk/single cell gene expression can be compared to protein measurements (Luminex/Mass Spectrometry)

	There are many filters that can be applied to the data so that depending on which modalities are being viewed the amount of missing data is kept to a minimum in each view

Features

Note

In the context of COMBAT-MLV, an item of data is known as a feature and is comprised of the following five levels:

Modality(Cluster Level)| (Cluster) | datatype |name

	Modality The actual experiment e.g., CITE-seq GEX, RNA-seq, CYTOF

	Cluster Level The level at which single cell data has been collapsed e.g major/minor cell type (not present in bulk modalities)

	Cluster The actual cluster e.g. cell type (not present in bulk modalities)

	DataType The type of data e.g. raw counts, reads per million, percentile bins

	Name The actual name of the feature bing measured e.g gene/protein, % cell type

Getting Started

[image: alternate text]
Specific views can be created by searching for genes/proteins or selecting data from different modalities or loading specific hallmarks. Predefined views can be accessed from the main home page [https://mlv.combat.ox.ac.uk/home] or from a clickable summary figure [https://mlv.combat.ox.ac.uk/summary]
There are two panels in the display. The right-hand panel displays summary of the data heat maps (one per modality) as well as hallmarks. The left hand panel displays individual ‘features’

[image: alternate text]

Left Hand (Summary) Panel

Loading Data

The load data button brings up four choices

	 Paste Gene List - (see) Allows you to type to paste gene names and will try and find matches is in each modality. The genes will then be shown in a heatmap

	 Load Hallmark - loads a text box with a list of distinguishing feature

	 Load other data types - Load data sets from modalities that are nor protein/gene based such as % cell types

	 Load Dendogram - Loads data that can be displayed hierarchically. At the moment the only option is the cell designation hierarchy derived from the CITE-seq Data

Loading Gene/Protein data

[image: alternate text]
Clicking on Load Data > Paste Gene list will bring up the Gene and Protein Selection dialog. Gene names (or EMBL Ids) need to be typed or pasted in the text box and the the the Find button (2) clicked. After a short search any modality containing data for the gene or corresponding protein will be shown in the main table. Modalities (columns) can be removed by un-checking the appropriate check box (4). Genes (rows) can be removed with the bin icon (3) or individual gene/modalities can be unchecked. Pressing the submit button will load in all the requested data and display appropriate summary heat maps (one per modality)

Heat Maps

[image: alternate text]
Heat maps can show a range of data . The samples on the x axis are grouped into categories (initially source) . This can be changed with the source dropdown (2), the choices available depend on which data has been loaded into the right hand panel. For a continuous field categories are split into four equal bins spanning the data range. The heatmap can be collapsed into the displayed categories , whereby an average is shown instead of each individual sample, by using the collapse button (3). Depending on which which modality the heatmap is showing, there will be a number of options in the title bar. For single cell modalities, the cluster level (4) and cluster i.e. cell type (5) can be changed. For all heatmaps, the type of data can be changed (6). Which types are available depends on the modality , but clicking on the dropdown will give you options and explanations about each type. The rows can be re-clustered at any time by clicking the cluster icon (7)

Data can be transferred to the right hand panel by clicking on the x axis labels and that feature will then be transferred across and a box plot will be shown. The data will be whatever cluster/cluster level and data type is currently being displayed in the heat map. The feature can then be combined with other features or sample associated data in a range of charts. For single cell data a heatmap consisting of expression for all cell types of the currently selected cluster level will also be added to the left-hand panel

Hallmarks

[image: alternate text]
Hallmarks show Features which have been shown to differentiate between COVID-19 and Sepsis/Flu or between the different severities of COVID-19 infection. By clicking on a feature in the hallmark will load it into the right hand panel and generate a box plot of that feature

Cell Type Dendogram

[image: alternate text]
This shows the three hierarchical cell type composition derived from the CITE-seq gene expression analysis. Panning and zooming can be achieved with dragging the mouse and using the mouse wheel respectively. Clicking on a white circle (cell type) will load data for that cell type into left hand panel. The number of levels can be altered by clicking on the cog icon and changing the level in the dialog which appears.

Right Hand (Feature) Panel

[image: alternate text]
This panel shows individual feature and other data associated with samples. By default, row charts the sample’s source and the modality is shown. A sample can have data from more then one modality To load sample associated data, click on he Get Data button (1) and you can then select from a range of available fields.

Changing Filters

The current filter (4) is displayed and can be changed with the Choose Filter button . The current number of samples and the total are are displayed on the right (8) . Changing the filter will update all the charts and the heatmaps to reflect the currently filtered samples. A Filter can also be applied (on top the selected base filter) by clicking on category in a row/pie chart or selecting a range/area in a histogram/scatter plot. Clicking the reset button on a chart will then remove that chart’s filter

Adding New Charts

New Charts for any of the current fields can be added with the Add chart button (6) This will bring up a dialog where you select the type of chart and fields to be used in the chart . The type of charts are

	scatterplot - two continuous fields can be plotted against each other

	boxplot - a continuous field can be chosen for the y axis e.g. a feature and discrete field to the x axis e.g source

	histogram - the distribution of continuous field is displayed

	row chart/pie chart the categories in a discrete field are displayed

Saving the View

Saving the view will save all the loaded data, current filter and charts. To achieve this click on the save button (7). If you do not own the view you can select ‘save as’, which will clone the current view and save it under a different name. You can also share the view with another user or make it public. The url will always point to this link or you can access it from my projects in the top nav bar

MLV Developer Documentation

Installing the Application

Clone from Git

git clone https://github.com/Hughes-Genome-Group/mlv.git

Setting up a Python Environment

MLV requires python 3.6 or later. One way to manage the python environment is to use use virtualenv and virtualenvwrapper.

pip install -U virtualenv
pip install -U virtualenvwrapper

Then add the following to your .bashrc (paths may vary)

export WORKON_HOME=$HOME/envs
export VIRTUALENVWRAPPER_PYHTON=/usr/bin/python3.6
. /usr/local/bin/virtualenvwrapper.sh

Next create a virtual environment and install all the required python modules:-

mkvirtualenv mlv
workon mlv
pip install -r requirements.txt

Installing Dependencies

The following programs need to installed and avialable in the path:-

	tabix and bgzip (https://github.com/samtools/htslib)

	rabbitmq-server (https://www.rabbitmq.com/download.html)

	bedtools (https://github.com/arq5x/bedtools2/releases)

	bedToBigBed,bigBedToBed and bigWigInfo (http://hgdownload.cse.ucsc.edu/admin/exe/)

	nodejs (https://nodejs.org/en/download/)

	nodejs modules najax, jquery,xhr2,extend and canvas

	NGINX (https://www.nginx.com/) or another http server (for production)

	PostgreSQL 9.5 or above (https://www.postgresql.org/)

Creating the Database

MLV requires PostgreSQL 9.5 or above, which can be runnning on the same or a separate server. The first thing to do
is to create the system database and associated tables by running create_system_db.sql in app/dyatabases/. To do this via the
the psql cosole, log in as a user with the correct permissions and run the following:-

createdb mlv_user;
\c mlv_user;
\i /path/to/app/databases/create_system_db.sql;

If your PostgreSQL instance does not have a suitable user, you need to create one and grant access to tables generated in the previous step.

CREATE USER mlv WITH PASSWORD 'pword';
GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA public TO mlv;
GRANT SELECT UPDATE, DELETE ON ALL SEQUENCES IN SCHEMA public TO mlv;

You also need to change the DB parameters in settings.py (or a custom config)

DB_USER="mlv"
SYSTEM_DATABASE="mlv_user"
DB_HOST="localhost" #or host name

Make sure you allow the user to connect to the database in PostgreSQL’s hb_config:-

#allow connection from another host
host mlv_user,generic_genome mlv x.x.x.x/32 md5
#allow local connection
local mlv_user,generic_genom mlv md5

If the database is hosted on a different server, you may have to update the firewall settings on this server to allow the mlv server to connect to it on port 5432

Creating The First Users

To create a user you will need to run the appropriate script (see Executing Scripts) In order to do this,
the app needs to know the location of the scripts module and also the password to the database.
These can be stored in a secure file and added to the environment variables:-

export FLASK_APP=/path/to/install/app/commands/cli_commands.py
export DB_PASS=pword

Then you can add the guest user and an admin:-

flask find_or_create_user --firstname John --last_name Doe --email guest@somewhere.com
flask find_or_create_user --first_name Mr --last_name admin --email me@gmailcom \
 --password password --admin True

Adding Genomes

Genomes are housed in separate databases to the system database. A single databases can hold many genomes
or separate databases can be created for each genome (not recommended). A fallback genome called ‘other’ initially needs to be
added. The following code creates a database ‘generic_genome’ and then adds the fallback ‘other’ and the C. Elegains(cel1) genome:-

flask create_new_genome_database -db_name generic_genome
flask add_new_genome --name other --label Other --database generic_genome
flask add_new_genome --name ce11 --label C. Elegans(ce11) --database generic_genome

Running and Serving the Application

For testing porposes the application can be run using the run_app script.

flask run_app --port 5000

This will run the application locally on port 5000. For production purposes it should be run through a web server gateway interface
such a Gunicorn. For example, the following code will run the app locally on port 5000 using 3 threads.

/path/to/virtualenv/gunicorn "app:create_app('lanceotron_config')"\
-b 127.0.0.1:5000 \
--workers 3 \
--error-logfile /path/to/gunicorn.log

MLV should also be run through a webserver such as Nginx or Apache. Although static files such as images and tracks can be served
through the app via flask, this is not recommended in a production setting. It is more efficient to serve such files from the webserver.
An Nginx config to allow this is given below:-

#redirect to the flask app
location / {
 proxy_pass http://localhost:5000;
 proxy_read_timeout 180s;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;

}
#directly serve any static files
location /static/ {
 alias /home/sergeant/mlv_dev/app/static/;
}
#temporary images
location /data/temp/ {
 alias /data/mlv/temp/;
}
#static files belonging to a module
location ~ /(.*)/static/(.*) {
 alias /home/sergeant/mlv_dev/app/modules/$1/static/$2;
}
#genome tracks
location /tracks/ {
 alias /path/to/tracks;
}
#any images belonging to projects
location ~ /data/(.+\.(?:jpg|jpeg|gif|png))$ {
 alias /data/mlv/$1;
}

Running the Message Queue

MLV uses celery and rabbit-mq to queue time consuming tasks and run simple pipelines. Two queues need to initialised,
a default queue for jobs whuch should return quickly and are required for the user to continue and a ‘slow queue’
for longer tasks and pipelines. To start the queues use the following commands:-

/path/to/venv/bin/flask runcelery
/path/to/venv/bin/flask runcelery --queue slow_queue

The default number of threads is 3, although this can be changed using the –threads parameter .
For debugging purposes celery can be disabled by changing the config setting USE_CELERY=False, which will
cause jobs to run directly in the flask thread and hence would be impractible for a production environment.

Using Supervisord

Supervisor (http://supervisord.org/) can be used to populate environment variables, and run the server and job queues
as daemon threads. An example of a suitable config would be:-

[unix_http_server]
file=/path/to/supervisor.sock ; (the path to the socket file)

[supervisord]
logfile=/path/to/supervisord.log ; (main log file;default $CWD/supervisord.log)
user=username ; (default is current user, required if root)
directory=/path/to/root_dir ; (default is not to cd during start)
environment=FLASK_APP="/path/to/root_dir/app/commands/cli_commands.py",\
 FLASK_CONFIG="my_config",\
 DATABASE_PASS="pword"

[supervisorctl]
serverurl=unix:///var/run/supervisor/supervisor.sock ; use a unix:// URL for a unix socket

[program:mlv]
command=/path/to/venv/bin/gunicorn "app:create_app('lanceotron_config')"\
 -b 127.0.0.1:5000 \
 --workers 3 \
 --error-logfile /path/to/gunicorn.log
autostart=true
autorestart=true

[program:celery]
command=/path/to/venv/bin/flask runcelery
autostart=true
autorestart=true

[program:celery_slow]
command=/path/to/venv/bin/flask runcelery --queue slow_queue
autostart=true
autorestart=true

Config Settings

The main config is settings.py in the main app directory. Another config, which can add or override variables in settings.py
can be specified either in the create_app method or in the environment variable FLASK_CONFIG. The following shows the config
variables which may need to be changed.

Database Settings

	DB_HOST The database host, either a server name or an IP address. By default, the environment variable DB_HOST will be used or localhost if it is not set.

	DB_USER The name of the database user, mlv by default.

	SYSTEM_DATABASE The name of the system/user database, mlv_user by default.

	DB_PASS The database password, set to the environment variable DATABASE_PASS by default (passwords shouldn’t be stored in the config)

Folder Locations

	DATA_FOLDER The location to store all the data, can be a mapped drive

	TEMP_FOLDER The location to store temporary data. Data here can be deleted

	TRACKS_FOLDER The location to store and serve genome tracks (BigWigs,BigBed files etc)

Message Queue (Celery) Settings

	BROKER_URL The message queue url. By default is the localhost but potentially it could be a different server

	USE_CELERY The default is True, only set to False when debugging

App Settings

	HOME_PAGE the url of the home page of the application

	HOST_NAME the name of the machine hosting the app

	APPLICATION_NAME The name of the application

	APPLICATION_LOGO The url of the application logo

	MODULES A list of modules to load. [“multi_locus_view”] by default

Email Settings

	MAIL_SERVER The email server, smtp.gmail.com by default

	MAIL_PORT The email server port, 587 by default

	MAIL_USE_SSL False by default

	MAIL_USE_TLS True by default

	MAIL_USERNAME The mail username . The dummy entry mlv@gmail.com is the default.

	MAIL_PASSWORD password by default

	HELP_EMAIL_RECIPIENTS A list of email addresees to which user questions are sent (an empty list bt default)

	MAIL_DEFAULT_SENDER The name to attach to emails that are sent out. ‘The MLV Team’ by default.

Misc. Setting

	SECRET_KEY Enables secure password hashing, should be sent to large random string

	JS_VERSION Should be changed each time a new version is rolled out as this will cause existing js and css caches on the user’s computers to be refreshed.

Executing Scripts

To run any script requires the environment variable FLASK_APP to point to the module cli_commands.py.
Other environment variables that may be required include FLASK_CONFIG, which points to a custom config
and DATABASE_PASS, which holds the database password.

export FLASK_APP=/path/to/install/app/commands/cli_commands.py
export FLASK_CONFIG=linux_test_config
export DATABASE_PASS="pword"

Writing scripts

To write a script, simply import app from cli_commands.py and wrap your code in the app context.

from app.commands.cli_commands import app
from app.jobs.jobs import get_job
from appp.ngs.project import get_project

with app.app_context():
 j=get_job(1234)
 j.process()
 p=get_project(4321)
 p.delete(True)

Built in Scripts

There are a number of utility scripts in cli_commands.py that can be run with

flask name_of_script --param value

create_new_genome_database

creates a new empty genome database.

	- -db_name - The name of the database

add_new_genome

Adds a genome to the specified database. If the name matches a public genome in the UCSC genome browser, the RefSeq genes and
chromosome file will automatically be added. Oterwise, the chromosome file (tab delimited chromosome to length) can be added manually to
data_root/<genome_name>/<genome_name>/chrom.sizes.

	- -name - The name of the database (required)

	- -label - The label e.g. Human(hg19) (required)

	- -icon - The url of an icon to represent the database (24px x 24px). If not supplied a default icon will be used

	- -database - The name of the database to store the genome in (required)

	- -connections - The numner of connections optional - default 5

run_app

Runs the app on the local host.

	- -port - The port

runcelery

Runs the message queue

	- -queue - The name of the queue . the default is celery, the other oprion is slow_queue

	- -threads - The number of threads to give the queue - optional (default is 3)

remove_deleted_projects

Removes all projects (and associated jobs) that are tagged as deleted. All data associated with the project is
permanantly deleted.

check_all_jobs

Calls check_status on all running jobs. This is not required for jobs in the local queue, only those running
on remote servers that have their check_process method overwritten. In which case this script should be run at
frequent time intervals e.g. in crontab

find_or_create_user

Manually adds a user to the database

	- -first_name - The user’s first name (required)

	- -last_name - The user’s last name(required)

	- -email - The user’s email(required)

	- -password - The user’s password (required)

	- -admin - If True,true or TRUE,the user will habe admin rights (default False)

Modules

Modules are a way of creating independent applications with discrete templates (html), static files (js,css and images) and python modules.
A module can be added to a system by simply adding the module folder to the app/modules directory and
then adding the name of the folder(module) to the MODULES list in the app’s config.

Folder Structure

app
|--modules
 |--module_name
 |--jobs
 |--projects
 |--static
 |--templates
 |--__init__.py
 |--config.json

Templates

The templates folder should contain subfolders named after each project in the module. Each subfolder should contain
home.html (see Project Home Page) as well as any other templates required by the project. Templates are referenced
in the normal way. e.g the file template.html in the subfolder project1 of the templates directory

/app/modules/<module_name>/templates/project1/template.html

would be referenced in the view method as:-

get_template(self,args):
 return "project1/template.html"

Static Files

Any static files (js,css,images) go in the static subfolder of the module and can be referenced from template files
by prefixing the module name before static e.g. the js file

/app/modules/static/myjsfile.js

would be accessed by:-

<script src="/<module_name>/static/myjsfile.js?version={{config['JS_VERSION']}}"></script>

Projects

Any projects need to be specified in a dictionary in the projects list of the module’s config
see App Settings. This will ensure the project is imported and registered when the app is initialised.
The actual project code needs to be in a python file named after the project in the module’s project folder -
see Project Class.

Jobs

Jobs need to be specified in the ‘jobs’ list of the module’s config. The job’s code should then be
in a module named after the job in the module’s jobs folder - see Jobs.

Config

The config should have three keys:- jobs, projects and config. The jobs and projects specify the jobs and projects that the
module contains and the config will update the app’s config with any extra variables required. For example:-

"jobs":[
 {"name":"peak_search_job"}
],
"projects":[
 {
 "name":"peak_search",
 "label":"Peak Search",
 "large_icon":"/lanceotron/static/img/peak_search.png",
 "can_create":true,
 "is_public":true,
 "main_project":true,
 }
],
"config":{

"NEW_APP_PARAMETER":"value"
}

Projects

A Project represents an analysis or pipeline and is represented by a JSON config, a python class,
html (Jinja) templates and JavaScript files. The metadata for each project is kept in the ‘projects’ table of
the system database.

Config

Each project needs to described by an entry in the project’s list of a module’s config.
The config should contain the following:-

	name - The name of the project type (that will be stored in the database as type)

	label - The name shown to user.

	large_icon - The url of the icon which is displayed in the panels on the main page.

	can_create If True then this type of project can be directly created from the home page.

	description A short description which is displayed in the create panel on the main page.

	is_public If False, then the user must have the permission ‘view_project_type’ with the value of the project’s type.

	main_project If True, then individual projects of this type will be accessible to view from the home page.

	enter_genome (optional) - If True then the genome can entered during the initial creation page, usually only name and description can be entered.

	anonymous_create (optional) If True, then projects of this type can be created by an anonymous user that is not logged in.

Users have to be given a specific permission to create a project If the project type is public,
new users will automatically get permission to create that project type.

HTML Templates

Project Home Page

Projects that can be created directly will have the following url:

http://<server_name>/projects/<project_type>/home

This page allows the user to enter a name, description and genome and then creates an empty project. The
actual template file should be located at

app/modules/<module_name>/templates/<project_name>/home.html

and contain the following html :-

{% extends "projects/home_base.html" %}
{% block project_explanation %}
 Information about the project here
{% endblock %}

Individual Project Page

A second url points to a specific instance of the project:-

http://<server_name>/projects/<project_type>/<project_id>

The flask view behind this url checks the user has permission to view/edit the project and
calls the project’s get_template method. The template is then rendered with the following kwargs
(plus any extra returned by the get_template method)

	project_id

	project_type

	project_name

	project_description

The project’s get_template method receives the args from the request and should return the location of the template
and a dictionary containing any key word arguments (in addition to the above) required by the template. Different
templates can be returned depending on the state of the project.

def get_template(self,args):
 kwgs={}
 template="<project_name>/<template_name>.html"
 #alter template and kwgs based on args and the project's current state
 return template,kwgs

The html templates for each project need to be located in the directory

app/modules/<module_name>/<project_name>/

with the following template:-

{% extends "common/page_base.html" %}

{% block stylesheets %}
 {{super() }}
 <!-- extra styles -->
{% endblock %}

{% block outercontent %}
 <!-- main content -->
{% endblock %}

{% block scripts %}
 {{ super() }}
 <!-- scripts -->
{% endblock %}

Project Class

Projects should inherit from the GenericObject in app.ngs.project, which supplies methods
amongst others for sharing, making public, deleting projects. In addidion the projects member of app.ngs.project
should be updated with the class name

To expose a project’s method to an HTML Client use the static member ‘methods’, which is a dictionary with
the exposed method as the key and a dictionary containing the following parameters:-

	
	permission required, either view or edit
	
	view - allow all users with view permission to access the method. This will include all users if the object is public

	edit - allow only users with edit permission to access the method

	
	async optional, either True or False (False by default)
	
	False - The method will be run in the browser thread

	True - The method will be processed asynchronously

	running_flag optional, The projects’s data will have this parameter set to the supplied value immediately before the method is sent to any queue. Should be a list containing the parameter and value to set

As an example a project new_project with a single method get_data that can be accessed by all users
(including anonymous ones) would be written as follows:-

from app.ngs.project import GenericObject,projects

class CaptureCompareProject(GenericObject):
 def get_template(self,args):
 return "new_project/temp.html",kwgs
 def get_data(self,param1="default",param2="default):
 #get the data using params
 return data

projects["new_project"]= NewProject

NewProjects.methods=
 {
 "filter_peaks":
 {
 "permission":"view",
 "running_flag":["filter_status","filtering"]
 }
 }

The method can then be called from JavaScript using:-

$.ajax({
 url:"/meths/execute_project_action/<project_id>",
 type:"POST",
 dataType:"json",
 contentType:"application/json",
 data:JSON.stringify({
 method:"get_data",
 args:{
 param1:"value1",
 param2:"value2"
 }
 })
})

The ‘args’ parameter contains the key word arguments sent to the project’s method.
However, if ‘project_data’ is present in the args then this will be used to update the project’s
data immediately and not passed to the method. This is useful if the method is beng run asynchronously
with the async flag.

Jobs

Jobs run tasks asynchronously, either locally through celery or remotely on another server.
Local jobs should extend LocalJob from app.jobs.jobs, whilst remote jobs should extend BaseJob

Constructor

To construct a job, user_id, inputs (a dictionary of key/value pairs) and genome should be
specified although default values of 0, an empty dictionary and ‘other’ will be used.
A type, however must be specified. Inputs should contain all the information required to send or resend the job.
Once a job is constructed in this way, it will be added to the database and can be retrieved in the future
with app.jobs.jobs.get_job(<job_id>).

Registering a job

In a module, each job should be in separate python file in the jobs folder of the module with the name of the job
type e.g. new_job.py and registered in the config:-

{ ,
 "jobs":[
 {"name":"new_job"}
],

}

The job’s type needs to be linked to its class using job_types from app.jobs.jobs.
For example new_job.py could contain:-

from app.jobs.jobs import BaseJob,job_types
import traceback

class NewJob(LocalJob):
 def __init__(self,job=None,inputs={},user_id=0,genome="other"):
 if (job):
 super().__init__(job=job)
 else:
 super().__init__(inputs=data,genome=genome,type="new_job",user_id=user_id)

 def process(self):
 try:
 #run the job
 except:
 self.failed(traceback.format_exc())

job_types["type"] = JobClass

Methods to Override

send(data)

For local jobs this simply calls process asynchronously in the celery thread.
For remote jobs, this method needs to be over-ridden in the subclass to call a pipeline
on a remote server add it to a remote queue etc. Usually no parameters need to be passed as
they should all be stored in the database when the job is created.
However, data can be passed for example a password, which you would not want to store.

resend()

The default implementation is just to call send. However it should be over-ridden to clean up any mess that
was created when the job was first sent.

check_status()

The default is to return the job’s status (the field in the underlying database).
This is sufficient for local jobs, as the status is updated by the celery thread.
For Remote jobs this method should just return the status if it is ‘complete’, ‘new’, ‘processing’ or ‘failed’.
Otherwise (i.e. the job is still running) it should actually check on the status of the
remote script/pipeline (query the remote server, check the queue etc.) and if the job
has failed or is complete, call failed or process respectively.

process()

For local jobs this should be the meat of the job and do all the heavy lifting ,storing the results to the database.
For remote jobs this should take the results from the remote pipeline and process/store them in the database.
Exceptions should be caught and if catastrophic, call failed passing the description of the exception.

delete()

This method just removes the job from the database. Sub-classes should over-ride this method and delete
any files or other resources before removing the database entry.

failed(msg)

sets the status and time finished, writing the error message to the database.
If there is more cleaning up required then this method should be over-ridden with the relevent code.

kill()

The default implementation of this method is simply to set the job’s status as failed and add a message to the outputs.
For remote jobs it should send a message to the server/queue to kill the job.
For local jobs - if possible the job’status should be checked periodically and processing stopped if
the status is ‘failed’.

Utility Methods

Job objects have the instance variable ‘job’, which is just an SQLAlchemy object referring to the database entry.
This can be manipulated directly or there are the following convenience methods:-

	complete Sets date finished and status fields in the database

	has_permission(user) Returns whether the user has permission for this job

	set_input_parameter(param,value) Sets the input parameter

	set_output_parameter(param,value) Sets the output parameter

	get_input_parameter(param,value) Gets the input parameter

	get_output_parameter(param,value) Gets the output parameter

	get_user_name() Gets the full name of the job’s owner

	set_status(self,value) Sets the status in the database

	get_info() Returns a dictionary containing the job’s inputs and outputs

Index

 _images/left-panel.png
~ [TMM(per VIR

ctypv MNP

)

Single cell gene expression (CITE-seq

s

cse2

wa
esr

8srio

wiRn

prast

e
prasz

we
osm

_images/left-right-panel.png
IBAT MLV ata View lark view ? Help Plogin B Register Projects.

SR - T B

e GEXmeOSTAMPIGS [y

_images/histogram.png
Peak Width & Peak Width

X Range: 3
50

Y Scale:
[JFixed Max[100 [3]5

Bin Number:

[0 26

0 200 400 800 800 1000 1400 1300 2200 2800 3000

_images/history.png
tory

1.Dimension Reduction c4 @vx
2.Add TSS Stats @vx
3.Add Peak Stats @vx
4.Create Images @vx
5.Dimension Reduction c9 @vx

Fielus: scca_sut area, sccmit pensity, scct_mot nox D3
Scc_mut width, wkenen score, Hkemes Score
Cluster etnods tsie

oK

_images/right-panel.png
2 3 4 wodsiiy

5

d Data | Choose Fiter LN Cicar iter |

P)
‘humber &P sarbles

%= ® IREEX)
niimbe

)
efof s

o o
ampl

5010 120 301
el R

_images/scatter_plot.png
SNE L tSNE

Point Size: 3

Main Region 4
Xrange 5320127 1o 64.968562
¥ range| 48 43982 to 41.100110

Log Scale 5
X axis[]Y axis

Centre Piot ()

[[o)

_images/multi_locus_view.png
W LanceOtron multi Locus View macs test 2
1

Tags cpg islands ext “log10(pvalue) X length
hene -
GATA1 K562
oo ETRUE
s00 WFALSE

IREERE]

GATA1 K562

ENTLa@==® % O

? Help & Mr MyJobs @@ My Projects B Admin &

@50 2 58/11508

zoom(2 [2|@ @ Location| chr2:191637020-191638594 +Add Track [

00s1.657.10051,6:
I

91,637,305, 637,4001,637,50051, 57,70091, 637 8009163750091, 635,001, 35,1001,63

ot forovalus’®

20 BN

GATAT K562

<pg islands ext
= Ref Genes

| wRuter

TogtOprae ;

Zregion
e track
I testhg3s

_images/peak_stats.png
‘Add Peak Stats
Enter the uri(s) of publically accesible BigWig fles to process and press Add

BigWig URL(S)

b sata molbiol ox s publicsergeant CTCE natureliguigsSCC1 Wik 4
hitto/sara molbiol ox ac, uk/public/sergeantCTGE nature/bigwigs/SCC]_mutbw

m:

BigWig Tracks to Process

CTCF_mut 3 4

CTCF_WT

_images/share_dialog.png
Share _test123 (1)

eruermane 1 (G112

‘Shared With: Pemission
Martin Sergeant

_images/subset.png
Create Subset

101 207 st egons
2060 10032 andom rgons

Name
P ———)

Deseription
Cratog o savo 5 st sutsot
5
Gonome
Homan(ngto)

6

_images/dendogram.png

_images/gene_search.png
Gene and Protein Selection
Pastein it of genes /
proteins and press fnd.Use:
Exemple List

LA -

e
L1
[=
w1
1L10 | (8}
12 Wy
33 -
™ ;

WINFSF 10
weokaL

weows
weos

@

aue

L
@
aLo
[
o
ane
s
apcst
@e1os2

Gosm

acse2
Gose
aree
@mrsrio

aoeLs
aeos

aue 5
LRy
aus

aLn
[N

ane
aue

@prost
@rres2

Gosu

gcse1
aRec
anwsFio

gcews
gceis

Bt aiphai-
11

L1 betanl-
2

aLs
@i
oL
aLs
GTF-aoha

Honcostatin
wosm
Hamcse

GeeLsmp
apne

_images/create_mlv.png
- Y ? Help &M

Project Types

Annotations | ' Multi Locus View

Upload bed like file of genomic
locations and metadata. Allows
soring and fiteing and -
visuslization of the data,

Upload 3 bed like file to create
annotations. In projects. you can
then find which features intersect
with these annotations.

Enter name and description to start

Name: Description:

Genome:

--Select--

iy Jobs @@ My Projects @ Admin £
1

_images/creating_images.png
L8Add Chart | CReset All
Peak Score Peak type Tags
200 Nese e
uper Spread
o Lt
Boess
10000
| punctate
000
mived
3
0 02 04 05 08 G oo | w0 | 00 G a0 | 1000 2300

zoom[2 [2] @ @ Location chri0:134176706-134179181

134177000 134177500 134178000

13417
L

I +ncarc o

wuRuler

I
Pesk Score

'ZMJg o! o o! o! "~

=Peaks
. Original Wig
= Ref Genes

nNYLo@==29v@
i 1

Location ©Model Scores | @Peak Stats
3 Start End Tags ~Peak Score Peak Area
chrl0 [134177706 | 134178181 1 5 161905
(x
Create UCSC Images
@MLV - based on the browser 2
UCSC -Add asessionURL 3
9
Margin \mum(np)‘ 1000 | |2 ‘ Image Width (px)‘ 500
7 8
117000 14177500 134176000 14078500 134173000 -
1 1 1 1 1
I Peaks
1284.00 Original Wig Ml

=

=

TRRC

TRRC27

TRRC27

RRC27

s
-
-
s Em

_images/hallmark.png
CITEs2q compIMNP clusterlfrealcMo.. CITE-seq compIMINP clusterfreginch.

——— ol cougetnd,
eMonaC1Q 1T o™
1 compotton
Redcad ons ST00 128 G e =
influ Modality Sour
Mono $100A8/9/12nHMGE2 L TS
s | 4% composion e e
orpesion| Rdueed VCANH o Py)
prig
[BRI .
compettion [
e

? ndimer 8 SSmples”™ @ nuifbei'of Samafes

_images/summary.png

nav.xhtml

 Table of Contents

 		
 Welcome to MLV’s documentation!

 		
 Multi Locus View

 		
 Summary

 		
 Creating a Project

 		
 Uploading Data

 		
 Saving A Project

 		
 Adding Graphs/Charts

 		
 Adding a Chart

 		
 The Genome Browser

 		
 Adding Tracks

 		
 Altering Track Appearance

 		
 Zooming/Panning

 		
 Feature track

 		
 Saving the Browser Layout

 		
 Capturing An Image

 		
 The Table/Images

 		
 Table Mode

 		
 Filtering Data

 		
 Sorting Data

 		
 Tagging Locations

 		
 Adding Images

 		
 MLV Images

 		
 UCSC Images

 		
 Running Analysis Jobs

 		
 Annotation Intersection

 		
 Find TSS Distances

 		
 Cluster on Columns

 		
 Calculate Peak Stats

 		
 Creating Subsets

 		
 Exporting Data

 		
 Project History

 		
 Permissions

 		
 Sharing a Project

 		
 Making a Project Public

 		
 Submitting an Issue

 		
 Frequently Asked Questions

 		
 Can MLV be viewed on a mobile/small screen device?

 		
 Can I upload a bigWig file?

 		
 Combat MLV

 		
 Summary

 		
 Features

 		
 Getting Started

 		
 Left Hand (Summary) Panel

 		
 Loading Data

 		
 Loading Gene/Protein data

 		
 Heat Maps

 		
 Hallmarks

 		
 Cell Type Dendogram

 		
 Right Hand (Feature) Panel

 		
 Changing Filters

 		
 Adding New Charts

 		
 Saving the View

 		
 Developer Documentation

 		
 Installing the Application

 		
 Clone from Git

 		
 Setting up a Python Environment

 		
 Installing Dependencies

 		
 Creating the Database

 		
 Running and Serving the Application

 		
 Running the Message Queue

 		
 Using Supervisord

 		
 Config Settings

 		
 Database Settings

 		
 Folder Locations

 		
 Message Queue (Celery) Settings

 		
 App Settings

 		
 Email Settings

 		
 Misc. Setting

 		
 Executing Scripts

 		
 Writing scripts

 		
 Built in Scripts

 		
 Modules

 		
 Folder Structure

 		
 Templates

 		
 Static Files

 		
 Projects

 		
 Jobs

 		
 Config

 		
 Projects

 		
 Config

 		
 HTML Templates

 		
 Project Class

 		
 Jobs

 		
 Constructor

 		
 Registering a job

 		
 Methods to Override

 		
 Utility Methods

_images/browser.png
zoom\z ‘\QQ Location | chr21:21094473-21099453 Add Track E-Omargms. 500 ‘\1
o oo oo Hosesco anomone 910 T
: ‘ . wwRuler
I =Peaks
97189 & = oriai
. Original Wig
=Ref Genes

_images/upload_dialog.png
Upload File

MACS2_TF_test1_hg38_K562-

GATA1_ENCFF392GZX_peaks.xls =
o =)

2. |stat
3. | fiish
4.1 length
5. | abs_summit

6. [pileup
@Has Headers 4

_images/cluster_dialog.png
Select Columns and Method(s)

Name of Analysis: 1 Wethods: EBUNAP CISNE
s rimamions 23 2
Columns To Include

Nearest Tss
OTssOstnes g

SCC1_mut stats
() SCCH_mutArea (] SCC1_mut Density (] SCC1_mut Max Height (] SCC1_mut Width

tsNEes
OtsnEt co OJisNE2 c9

umap ca
CumaPt_ca CumaP2_ca

Other
(C)ATAC Score [HIK27ac Score (] HIKéme Score () HIKéme3 Score.

{0 Noise Score () TF Score.
5

_images/table_mode.png
Location ©Clustering ©Model Scores | @Nearest ACECEC R e [l e | humbnail G e = Tags TR
chr Start End Tags UMAP1 PeakScore | TSSD = = e = —— _— - -
e 5037 6056 08584395647 04~
oL 5637 6056 08584395647 046569 473 - 2
chraL. 66549 67587 50023450851 098774 0
chraL 72018 74395 91904582077 0.97574 0 L R e e : L =D GET OPREES |08
o B0 TS IR | | GHED 755 T X BT e
chraL 102386 102502 16.8499507904 0.00025 7 e N .
chraL. 107716 108398 25370690823 1 0 chraL 72018 74395 91904582977 0.9
chraL 109051 109631 18164541721 0.9962 0
= e e

chraL. 120363 121361 54650031358 0.9891 1263 B = :
chral 125365 125725 05880923271 0.01945 2529 - — el crel. 8L GrEs 215362257200
chr2L 125840 125903 -19.9088516235 0.00024 3004 o e e
chraL 125021 126104 140068446732 0.0008 3085

chraL 102386 102502 168499507904 0.0
chraL. 128297 129646 70604457855 095291 2431
chraL 131704 132225 18691955805 0.99876 0 - o : : - P - ;
chral 13134 143593 Z3430646740 7y (004590 0 . S, commafi s - - o chraL 107716 108398 25370600823 1
chraL 155397 155622 43691768646 0.0004 63
chraL. 155663 155738 19.1690940857 0.00602 291
chraL 155040 156310 08072420955 0.00594 0 e e - el L 109051 109631 Tstomaral 09
chraL. 158515 150469 56860790253 099137 0 e T CE T
chraL 160356 162386 80234184265 098576 1325

chr2L 120363 121361 54650931358 09

chr2L 165235 165786 1.8263940811 0.60043 6204
chr2L 166234 167298 4063308239 0.9995 7203

_images/annotation_set.png
Upload File

ame sows [Geome | osonases Name NoFie Choson
Er— e umng) 200 © @ 8- some Gees Feids:
o compes g 2oz @ @ e W
m fasa o) 22012 © & W pescrton 3
st =) 22012 © & W sdsd
o oo gt 201 © & @
estucse ;= gty 20120 © @ O ®
ek Lot compee Mowsemit) 2200510 @ @ O W y
oot ot ot e 2050 @ @ 6§ Genome.
Hapi Hsono ot conpte Hmentate) 2000505 @ @ & W Human(hg19) Y]
DAk LSUENCODE) como Humantot) zmats @ @ 6 W
super onancer e wosomng) 220050 © @ & W 1 [nec |
TI Down Peaks. complete Mousemto) 20191202 @ @ & W
asa compiele Humanpg®) 2010007 @ & W 2
et sz s st 200000 @ @ 8
Goscsed compes g 20000 @ @ O W
o compes g 21064 © @ 8-
567

_images/tagging.png
@ 10356/10356

Tagging *
®reject () 6 - W8
ONone (n) 7

Add Category

_static/minus.png

_static/plus.png

_static/file.png

